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ABSTRACT

In this technical report, we describe the CP-JKU team’s submis-
sion for Task 1 Low-Complexity Acoustic Scene Classification of
the DCASE 22 challenge [1]. We use Knowledge Distillation to
teach low-complexity CNN student models from Patchout Spectro-
gram Transformer (PaSST) models. We use the pre-trained PaSST
models on Audioset and fine-tune them on the TAU Urban Acous-
tic Scenes 2022 Mobile development dataset. We experiment with
using an ensemble of teachers, different receptive fields of the stu-
dent models, and mixing frequency-wise statistics of spectrograms
to enhance generalization to unseen devices. Finally, the student
models are quantized in order to perform inference computations
using 8 bit integers, simulating the low-complexity constraints of
edge devices1.

Index Terms— Knowledge Distillation, Patchout Audio Trans-
former (PaSST), Receptive Field Regularization, Post-Training
Static Quantization

1. INTRODUCTION

The first task of the DCASE’22 challenge is to recognize different
scenes from one-second audio recordings [1]. This Acoustic Scene
Classification (ASC) scenario presents various challenges and con-
straints:

• generalization across different recording devices and cities.
• low-complexity requirements in terms of number of parameters

(128K), inference using 8 bit integer (INT8) computations, and
a limited number of multiply-accumulate operations (30 mil-
lion MACs);

• the limited amount of information contained in 1-second audio
snippets compared to 10-second snippets in the ASC task of
the DCASE’21 challenge [2].

Convolutional Neural Networks (CNNs) are well established
models to tackle ASC tasks and have dominated previous years’
challenges [2–5]. More specifically, Receptive Field Regulariza-
tion (RFR) [6, 7] was shown to improve the generalization on this
task [3, 8–10]. Recently, also Audio Transformers, like Patchout
Audio Transformer (PaSST) [11], showed promising results on
ASC tasks, achieving state-of-the-art accuracies on the TAU Ur-
ban Acoustic Scenes 2020 Mobile dataset [12]. PaSST models

1Source Code: https://github.com/CPJKU/cpjku_
dcase22

do not scale to the complexity requirements imposed by the chal-
lenge. This technical report describes our attempt to marry the con-
cepts of PaSST models and RFR-CNNs in a Knowledge Distilla-
tion (KD) [13–15] framework. The ultimate goal is to compress the
knowledge of a well-performing ensemble of PaSST models into
a low-complexity RFR-CNN while maintaining the predictive per-
formance. We perform Post-Training Static Quantization to convert
weights and all computations of the final low-complexity model to
INT8 variable type. In the following, we describe the techniques
used to process the acoustic signals, train teacher and student mod-
els, and unify all parts in a teacher-student KD setup.

PaSST [11] and Audioset [16] are the only external data sources
used in our submissions.

2. DATA PREPROCESSING AND AUGMENTATION

2.1. Preprocessing

The raw audio signal is down-sampled using a sampling rate of 32
kHz, and the input features are extracted from the raw audio signals
using a Short Time Fourier Transformation (STFT) with a window
size of 2048 and an overlap of 36% for the RFR-CNN student, and
a window size of 800 with 40% overlap for the PaSST teacher mod-
els. We apply a Mel-scaled filter bank to end up with 256 frequency
bins in case of the student and 128 frequency bins for the teacher
models. The applied feature extraction for PaSST matches its Au-
dioset pre-training settings and the student model feature extraction
is similar to [7].

While training PaSST models downstream on the TAU Urban
Acoustic Scenes 2022 Mobile development dataset, we apply fre-
quency and time masks of sizes 48 and 20, respectively. Addition-
ally, pitch-shifting is applied by randomly changing the maximum
frequency of the mel filter bank [17].

2.2. Reassembling 10-second Audio Files

The audio files are given in the form of 1-second snippets, which are
obtained by splitting the full 10-second snippets of the TAU Urban
Acoustic Scenes 2020 Mobile development dataset into 10 pieces.
The provided meta-information includes segment identifiers that al-
low for reassembling the full 10-second recordings. To increase
the diversity in the training data, we train our models by randomly
cropping 1-second audio snippets from the reassembled 10-second
version.

https://github.com/CPJKU/cpjku_dcase22
https://github.com/CPJKU/cpjku_dcase22
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PaSST Settings for
downstream training Accuracy Log Loss

f = 0, p = 0.0, Mixup (α = 0.3) 0.596 1.304
f = 4, p = 0.0, Mixup (α = 0.3) 0.604 1.119
f = 8, p = 0.0, Mixup (α = 0.3) 0.600 1.063
f = 8, α = 0.8, p = 0.5 0.602 1.064
f = 6, α = 0.8, p = 0.5 0.612 1.050
f = 4, α = 0.8, p = 0.5 0.612 1.077
f = 2, α = 0.8, p = 0.5 0.606 1.123
f = 6, α = 0.8, p = 0.3 0.612 1.054
f = 6, α = 0.8, p = 0.7 0.603 1.066
f = 6, α = 0.6, p = 0.5 0.611 1.050
f = 6, α = 0.4, p = 0.5 0.611 1.044
PaSST ENSEMBLE 0.627 1.001

Table 1: Results of PaSST models trained downstream on TAU Ur-
ban Acoustic Scenes 2022 Mobile development dataset on the pro-
vided development set split. f denotes frequency patchout, α de-
notes the mixing coefficient of MixStyle, p denotes the probabil-
ity of a batch of recordings being selected for MixStyle and Mixup
denotes the application of Mixup with a mixing coefficient of 0.3.
Results are averaged over three different runs of the same setting.
PaSST ENSEMBLE uses averaged logits of eight models trained
according to the different configurations that include MixStyle from
the rows above.

2.3. Mixup and Mixstyle

We experiment with mixing feature and label information using
Mixup [18] and mixing the style of the recordings using MixStyle
[19]. Mixup has been shown to improve generalization in gen-
eral [8] and MixStyle is used in particular to enhance generalization
across recording devices. We experiment with a derivative of the
original channel-wise MixStyle and apply Freq-MixStyle, as sug-
gested in [20]. They show that the device-style is transported in
the frequency-wise statistics (mean and standard deviation) of au-
dio recordings. Freq-MixStyle is applied by normalizing frequency
bands of spectrograms and denormalizing with mixed frequency
components of two different recordings, where the mixing coeffi-
cient α specifies the shape of the Beta distribution. The effect of
Freq-MixStyle can be regularized by a second parameter p, which
controls the probability of whether Freq-MixStyle is applied to a
batch of recordings. We applied Mixup, Freq-MixStyle and a com-
bination of both and found that Freq-MixStyle outperforms Mixup
and a combination across most settings. For both teacher and stu-
dent models, we apply Freq-MixStyle only to the input.

3. TEACHER MODEL: PASST

With the rise of Vision Transformers (ViT) [21], processing spec-
trograms with transformer models became a recent topic of inter-
est. Gong et al. [22] trained an Audio Spectrogram Transformer
(AST) from pre-trained computer vision models to achieve state-of-
the-art performance on Audioset [16]. Patchout faSt Spectrogram
Transformer (PaSST) [11] extends this idea further by introducing a
technique called patchout to tackle the quadratic scaling of attention
layers with respect to the sequence length and to improve the gener-
alization of trained transformers. PaSST models are well suited for
training on downstream tasks in a short amount of time resulting,

for instance, in an accuracy of 76.3% on the TAU Urban Acoustic
Scenes 2020 Mobile dataset [12].

Spectrogram transformers [21–23] first extract overlapping
patches of spectrograms and then add positional encodings to these
patches. PaSST disentangles time and frequency positional encod-
ings. This allows simple fine tuning of the pre-trained PaSST mod-
els on the shorter 1-second clips of the task [1]. For our experi-
ments, we choose a PaSST model pre-trained on Audioset [16] with
a patch size of 16x16 and a stride of 10. Structured patchout [11]
is applied only on the frequency dimension, which removes entire
frequency bins and shortens the resulting sequence of embeddings.

3.1. Experimental Setup

We train all PaSST models downstream on the TAU Urban Acoustic
Scenes 2022 Mobile development dataset for a total of 250 epochs,
where the model only sees one-tenth of the available data in a single
epoch since we randomly crop a single 1-second piece for each 10-
second recording. We use Adam [24] with a weight decay of 0.001
and a learning rate schedule: for the first 30 epochs the learning rate
is exponentially increased to 1x10−5, followed by a linear decrease
to 1x10−7 until epoch 130.

Table 1 shows the results on the provided development set split.
f denotes the number of frequency bins to remove, and α and p
denote the MixStyle configurations. The first row lists a model
trained without patchout and MixStyle, which quickly overfits on
the downstream task. Using patchout and MixStyle serves as proper
regularization, with the removal of 6 frequency bins at random and
moderate MixStyle configuration (α = 0.4, p = 0.5) achieving
the best results in terms of validation loss. Averaging the logits
of multiple PaSST models of different configurations (denoted as
PaSST ENSEMBLE) further improves the results and suggests the
use of transformer ensembles as teacher models.

4. STUDENT MODEL: RFR-CNN

The student model is a Receptive Field Regularized [6, 7] Convo-
lutional Neural Network (RFR-CNN) and is based on CP ResNet
which performed well in previous editions of the DCASE chal-
lenge [2,5,8,12,17]. Table 2 summarizes the used CNN. We modify
the architecture used in [17] in order to fit to the complexity con-
straints and to account for the shorter audio length in the DCASE
2022 challenge, as follows:

• We reduce the CNN’s initial width to 32 channels. Since the
number of parameters in the network grows quadratically with
the width of the network, this greatly reduces the number of
parameters.

• We introduce grouping in the convolutional layers of the net-
work, which also reduces the number of the parameters and
MACs regardless of their width [17]. This is controlled with
the hyper-parameters G2, G3.

• We further fine-tune the number of parameters by changing the
width of the final residual block of the network (the block with
the majority of the parameters). We accomplish this using the
hyper-parameter C.

• To account for the shorter audio clips (1-second), we change
the max-pooling layers (indicated by Pf ) to perform pooling
only on the frequency dimension.

• We investigate two receptive field settings of the network, con-
trolled via the hyper-parameter x.
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Table 2: Compact CP-ResNet Architecture

WIDTH GROUPING BLOCK CONFIG

W INPUT 5× 5, P

W 1 R 3× 3, 1× 1, Pf

W 1 R 3× 3, 3× 3, Pf

LINEAR W → 2Ẇ
2×W G2 R 3× 3, 3× 3

LINEAR 2W → 4Ẇ
4×W − C G3 R x× x, 1× 1

CLASSIFIER 4×W − C → 10 CLASSES
GLOBAL MEAN POOLING

P : 2× 2 MAX POOLING.
Pf : 2× 1 MAX POOLING OVER THE FREQUENCY DIMENSION.
R: RESIDUAL, THE INPUT IS ADDED TO THE OUTPUT

5. PASST AND RFR-CNN IN THE KNOWLEDGE
DISTILLATION FRAMEWORK

In this section, we bring together PaSST teacher models and a low-
complexity RFR-CNN in the KD framework. The aim is to com-
press the knowledge of multiple large teacher models into a low-
complexity student model. We use KD in its original form, as in-
troduced in [13]. First, PaSST models with different configurations
are trained as shown in Table 1. Second, we choose PaSST mod-
els of different configurations to form a well-performing ensemble,
which we denote as PaSST ENSEMBLE in the following. Thirdly, a
student model, as described in Section 4, is trained using a weighted
sum of the distillation and the hard label loss as shown in Equation
1.

LTOTAL = LLABEL + λLDIST (1)

The distillation loss is based on matching the predictions of stu-
dent and teacher using soft targets given in Equation 2 with z being
the logits, q the soft targets and T the temperature that controls the
softness of the probability distributions.

qi =
exp(zi/T )∑
j exp(zj/T )

(2)

Using the same temperature T to generate teacher and student
soft targets from the respective logits, the distillation loss is cal-
culated as the KL-divergence LDIST = DKL(qstudent ||qteacher ).
Since 1-second pieces are cropped randomly from the reassembled
10-second recordings, PaSST ENSEMBLE generates the soft targets
in an online fashion, while the student model is trained.

Tables 3 and 4 show the effect of varying the temperature of the
soft targets and the weight of the distillation loss λ, respectively.
Both tables are based on a simple CNN baseline model and a single
teacher and serve as a proof of effectiveness of KD from a PaSST
teacher model. While λ = 50 is used in our final submissions,
we found that using T = 1 is beneficial when switching to teacher
ensembles.

KD with varying temperatures Accuracy Log Loss
Baseline 0.524 1.418
T=1 0.541 1.216
T=3 0.567 1.146
T=5 0.559 1.183
T=8 0.554 1.219
T=12 0.551 1.265

Table 3: Varying temperature of soft targets for a simple low-
complexity baseline model similar to 2 and a single teacher. Results
are reported on the provided development set split.

KD with varying λ Accuracy Log Loss
λ=10 0.555 1.231
λ=30 0.563 1.175
λ=50 0.577 1.138
λ=100 0.565 1.144
λ=200 0.562 1.160

Table 4: Varying λ for a simple low-complexity baseline model
similar to 2, a single teacher and T = 3. Results are reported on the
provided development set split.

Additionally, we experiment with adding a second distillation
loss based on the predictions of a teacher on the full reassembled 10-
second recordings, which adds a third term to the calculated loss as
shown below. LDIST LONG is included into one of our submissions
as it improved results slightly. Further investigations have to be
conducted to show if it yields a stable improvement across different
settings.

LTOTAL = LLABEL + λLDIST + λLONGLDIST LONG (3)

Finally, we investigate the use of a larger dataset for knowledge
distillation. In particular, in addition to the previously discussed
losses, we use a batch sampled from Audioset for each batch sam-
pled from the development set, and we minimize the loss between
the student and teacher on the audioset samples.

LTOTAL = LLABEL + λ(LDIST + LDIST AUDIOSET ) (4)

5.1. Experimental Setup

Student models in the KD framework are trained for a total of 750
epochs, where the model only trains on one-tenth of the available
data in a single epoch since we randomly crop a single 1-second
piece for each 10-second recording. We use Adam [24] with a
weight decay of 0.001 and a learning rate schedule: for the first
150 epochs the learning rate is exponentially increased to 1x10−3,
followed by a linear decrease to 5x10−6 until epoch 650.

Freq-MixStyle is applied to both teacher and student inputs
independently, which enforces the student to match the teacher
predictions even under different device-styles and enhances cross-
device generalization. We set α = 0.3 and experiment with differ-
ent probabilities p.

6. QUANTIZATION

We use Post-Training Static Quantization as implemented in Py-
Torch [25] to quantize all model parameters and perform all infer-
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ID W,G2,G3,C,x Mixup Mixstyle T, λ, λLONG , AS Parameter Count MMACs LLoss Quant. LLoss

1 32,2,1,36,3 α = 0.3 ✗ 1,50,3,✗ 127,046 29.06 1.111 1.115
2 32,2,1,36,3 ✗ α = 0.3, p = 0.6 1,50,0,✗ 127,046 29.06 1.095 1.110
3 32,1,1,0,1 ✗ α = 0.3, p = 0.2 3,50,0,✗ 121,610 28.24 1.127 1.139
4 32,1,1,0,1 α = 0.3 ✗ 1,50,0, ✓ 121,610 28.24 1.140 1.163

Table 5: Model configurations submitted to the challenge. W, G2, G3, C and x configure the student architecture as denoted in Section 4
and Table 2. Mixup and MixStyle describe the respective configurations when training the student model. T and λ denote temperature and
the weight of the distillation loss. λLONG denotes the weight of the distillation loss with respect to a 10-second teacher and AS denotes the
use of Audioset for knowledge transfer. The last two columns show the log losses on the provided development set split. LLoss is averaged
over the last 10 epochs of training and Quant. LLoss is the result achieved by the final quantized model.

ID Device-wise log losses
A B C S1 S2 S3 S4 S5 S6

1 0.755 1.021 0.886 1.092 1.195 1.085 1.320 1.251 1.440
2 0.801 1.087 0.965 1.119 1.171 1.072 1.216 1.172 1.384
3 0.838 1.071 0.995 1.164 1.210 1.115 1.265 1.204 1.390
4 0.758 1.048 0.923 1.145 1.169 1.119 1.389 1.318 1.604

Table 6: Results of the quantized models on the provided development set split in terms of validation loss on a per-device level.

ence computations with 8 bit integers. Several steps are involved in
the quantization procedure:

• Fusing all Convolution, Batch Norm and ReLU combinations
to improve the numerical accuracy. This decreases parameters
and increases MACs slightly. The provided complexity calcu-
lation tool is applied after this step.

• Insert observers to collect statistics that are used to calculate
zero point and scale of quantization. We use ’fbgemm’ ob-
server implemented in PyTorch.

• Collecting activation statistics using a calibration set. We use a
subset of the training data for calibration.

• Quantizing all model parameters and the input data using the
quantization stub inserted into the model’s forward pass.

7. SUBMISSIONS AND RESULTS

The configurations and the final results on the development set split
are reported in Table 5. Table 6 shows the loss on a per-device ba-
sis and underlines the performance gains of submissions including
Freq-MixStyle (2 and 3) on the unseen devices S4-S6. Below we
describe our submissions in detail:

Submission 1 (t10sec): This submission uses a student model
with an initial width of 32 channels and an extended receptive field
configured by setting x=3 as listed in Table 2. To fulfill the complex-
ity requirements, we use grouping of 2 on the penultimate residual
block and decrease the width of the final residual block by setting
C=36. We use Mixup with a mixing coefficient of 0.3. KD settings
include a temperature of 1 and a distillation loss weight of 50. This
submission uses a second distillation loss from a 10-second teacher
with a weight of 3 as shown in Equation 3.

Submission 2 (mixstyleR8): This submission uses a student
model configured in the same way as Submission 1. Instead of
Mixup, this submission uses MixStyle with a mixing coefficient α =
0.3 and a probability of 0.6 to be applied to a certain batch. KD is
performed using a temperature of 1 and a distillation loss weight of
50.

Submission 3 (mixstyleR5): This submission uses a student

model with an initial width of 32 channels and a smaller receptive
field configured by setting x=1 as listed in Table 2. No additional
grouping or decreasing width is necessary to stick to the complexity
requirements. We use MixStyle with a mixing coefficient α = 0.3
and a probability of 0.2 of being applied to a batch. KD settings
include a temperature of 3 and a distillation loss weight of 50.

Submission 4 (audiosetR5): This submission uses a student
model configured the same way as in Submission 3. We use Mixup
with a mixing coefficient of 0.3. and a probability of 0.2 of be-
ing applied to a batch. KD settings include a temperature of 1 and
a distillation loss weight of 50. This submission includes KD on
Audioset as desribed in Equation 4.

All submitted models were retrained on the full development
set before creating the final predictions for the challenge.

8. CONCLUSION

In this technical report, we described the CPJKU submission to Task
1 of the DCASE 22 challenge. We used ensembles of the audio
spectrogram transformer PaSST to achieve a loss as low as possi-
ble. We then tried to compress the knowledge into a low-complexity
receptive-field regularized CNN student model, while maintaining
as much of the predictive performance as possible. We investigated
Audioset as additional dataset for knowledge transfer and included
the predictions of a 10-second teacher as distillation loss. Addition-
ally, we experiment with Freq-MixStyle of spectrograms to enhance
device generalization and, finally, restricted our model to perform
all inference computations in variable type int8 using Post-Training
Static Quantization.
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