
Detection and Classification of Acoustic Scenes and Events 2022 3–4 November 2022, Nancy, France

KNOWLEDGE DISTILLATION FROM TRANSFORMERS
FOR LOW-COMPLEXITY ACOUSTIC SCENE CLASSIFICATION

Florian Schmid1,2, Shahed Masoudian2, Khaled Koutini2, Gerhard Widmer1,2

1Institute of Computational Perception (CP-JKU),2LIT Artificial Intelligence Lab,
Johannes Kepler University Linz, Austria

florian.schmid@jku.at, shahed.masoudian@jku.at, khaled.koutini@jku.at

ABSTRACT
Knowledge Distillation (KD) is known for its ability to compress
large models into low-complexity solutions while preserving high
predictive performance. In Acoustic Scene Classification (ASC),
this ability has recently been exploited successfully, as underlined
by three of the top four systems in the low-complexity ASC task of
the DCASE‘21 challenge [1] relying on KD. Current KD solutions
for ASC mainly use large-scale CNNs or specialist ensembles to
derive superior teacher predictions. In this work, we use the Audio
Spectrogram Transformer model PaSST, pre-trained on Audioset,
as a teacher model. We show how the pre-trained PaSST model
can be properly trained downstream on the TAU Urban Acoustic
Scenes 2022 Mobile development dataset [2] and how to distill the
knowledge into a low-complexity CNN student. We study the effect
of using teacher ensembles, using teacher predictions on extended
audio sequences, and using Audioset as an additional dataset for
knowledge transfer. Additionally, we compare the effectiveness of
Mixup and Freq-MixStyle to improve performance and enhance de-
vice generalization. The described system achieved rank 1 in the
Low-complexity ASC Task of the DCASE‘22 challenge [3]1.

Index Terms— Patchout Spectrogram Transformer, Mixup,
Freq-MixStyle, Knowledge Distillation

1. INTRODUCTION

Acoustic Scene Classification (ASC) aims to build a model that ac-
curately predicts a scene label given an audio recording. Convo-
lutional Neural Networks (CNNs) are well-established models that
dominate the field of ASC [1, 4–6]. Low-complexity solutions are
of increasing interest, making the ASC systems runnable on edge
devices. Model compression techniques to reduce complexity in-
clude Parameter Pruning [7–9], designing efficient network archi-
tectures [10, 11] and Knowledge Distillation (KD) [12–14]. KD re-
cently showed promising results for ASC, with three out of the top
four systems applying KD in the low-complexity ASC task of the
DCASE‘21 challenge [1].

This paper focuses on distilling knowledge from Patchout
faSt Spectrogram Transformers (PaSST) [15] into low-complexity
CNNs, the winning approach of the DCASE‘22 low-complexity
ASC task [3]. The TAU Urban Acoustic Scenes 2022 Mobile de-
velopment dataset [2] and the low-complexity constraints of the
DCASE‘22 challenge define an ASC scenario involving various
challenges:

C1 Limits on the number of parameters and the number of
multiply-accumulate operations.

1Source Code:https://github.com/CPJKU/cpjku_dcase22

C2 Scenes are recorded using different recording devices, result-
ing in a domain shift.

C3 1-second audio snippets are provided compared to 10-second
snippets in the ASC task of the DCASE’21 challenge [1].
Shorter audio files contain less information and are more
challenging to classify.

The system studied in the following tackles C1 by using KD
with PaSST [15] models as a teacher and a low-complexity CNN
as a student. Regarding C2, the domain shift caused by different
recording devices is counteracted by Freq-MixStyle [16], a modi-
fied version of MixStyle [17], operating on frequency statistics. The
1-second audio snippets described in C3 result from splitting the
10-second snippets of the TAU Urban Acoustic Scenes 2020 Mo-
bile development dataset [2] into ten pieces. The provided segment
identifiers allow for reassembling the complete 10-second files. We
train all models on randomly cropped 1-second pieces from the re-
assembled 10-second files to increase the diversity in the training
data. Reassembling the 10-second files additionally allows for ob-
taining superior teacher predictions for KD, as described later.

The related work regarding the system’s building blocks is de-
scribed in Section 2. Section 3 introduces student and teacher archi-
tectures and the PaSST downstream training. Section 4 describes
how student and teacher are combined in a KD setup and sets the
stage for the results presented in Section 5. The paper is concluded
in Section 6.

2. RELATED WORK

2.1. ASC Architectures

In the past years, Convolutional Neural Networks (CNNs) became
the most prominent solution to process spectrograms and dominated
previous DCASE challenges [1,4–6]. Restricting the receptive field
of CNNs, known as Receptive Field Regularization, was shown to
be particularly well suited for ASC tasks [18, 19].

Inspired by Vision Transformers (ViT) [20], transformers ca-
pable of processing spectrograms to solve audio tasks have been
proposed recently. In this regard, Audio Spectrogram Transform-
ers (AST) [21], pre-trained on computer vision tasks, have been
adapted to the audio domain and achieved state-of-the-art results
on Audioset [22]. Image [20, 23] and spectrogram [15, 21] trans-
formers extract overlapping patches with a certain stride from the
input image and add a positional encoding. Patchout faSt Spectro-
gram Transformer (PaSST) [15] disentangles frequency- and time-
encodings, simplifying downstream training on shorter audio clips.
PaSST additionally introduces Patchout, a mechanism that drops
parts of the input sequence to improve generalization and reduce

https://github.com/CPJKU/cpjku_dcase22
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memory and computational complexity in the quadratically scaling
attention layers.

2.2. Knowledge Distillation in ASC

In KD [12–14], the aim is to compress the knowledge of a possi-
bly large number of complex teacher models into a low-complexity
student model without significant performance loss. The student
minimizes a weighted sum of hard label loss and distillation loss, as
shown in Eq. 1. The distillation loss matches student and teacher
predictions based on the Kullback-Leibler divergence between soft
targets: LDIST = DKL(qteacher||qstudent). By minimizing the dis-
tillation loss, the student learns to mimic the teacher.

LTOTAL = LLABEL + λLDIST (1)

The soft targets q are created from the logits z by computing
q = softmax(z/T ) with a specific temperature T . Raising the
temperature T creates a softer distribution and allows the student to
exploit the rich similarity information between classes predicted by
the teacher compared to the hard labels [12].

In the low-complexity task of the DCASE‘21 challenge [1], the
top two systems included KD based on a pre-trained CNN teacher
network [4] and a large two-stage fusion CNN teacher model [5].

Jung et al. [24] showed that learning from soft targets in a
teacher-student setup has a beneficial effect as one-hot labels do
not reflect the blurred decision boundaries between different acous-
tic scenes. Teacher superiority is achieved by using multiple audio
segments of the same scene recorded at different locations to gen-
erate teacher predictions.

Another popular idea to generate superior teacher predictions is
to use ensembles of specialist models. In this regard, ensembles of
device-experts [25], ensembles of models trained on different audio
representations [26], and ensembles of specialist models for confus-
ing pairs of acoustic scenes [27] have been studied and successfully
applied.

2.3. Mixup and Freq-MixStyle

Mixup [28] constructs virtual training samples by linearly mixing
two existing samples and their labels. In particular, the coeffi-
cients of the convex sample and label combinations are drawn ran-
domly from a Beta distribution, its shape specified by a parameter
α. Mixup has been shown to improve generalization on ASC tasks
before [29].

MixStyle [17] is introduced to enhance domain generalization
by mixing channel-wise statistics of images. However, the device-
style in spectrograms primarily resides in the frequency-wise statis-
tics. To enhance generalization across recording devices, an adapted
version of MixStyle, Freq-MixStyle, is proposed in [16]. It pro-
ceeds by normalizing each frequency band and denormalizing it
with mixed frequency coefficients of two different samples. Freq-
MixStyle is guided by two parameters: α determines the shape of the
Beta distribution used to randomly draw mixing coefficients, and p
specifies the probability of whether it is applied to a batch or not.

3. MODEL SPECIFICATIONS

3.1. Student Model: Compact RFR-CNN

The student model is a Receptive Field Regularized [18, 19] Con-
volutional Neural Network (RFR-CNN) and is based on CP ResNet

which performed well in previous editions of the DCASE ASC chal-
lenge [1, 2, 6, 29, 30]. The initial width is reduced to W = 32
channels, and a grouping of 2 is applied to the penultimate block
to obtain a compact model. The max-pooling layers (indicated by
Pf ) are adapted to perform pooling only over the frequency dimen-
sion to account for the shorter audio clips (1-second). This allows
us to downscale spectrogram dimensionality while preserving tem-
poral information. Finally, C = 36 channels are cut from the final
residual block of the network to conform to the low-complexity lim-
itations. Table 1 summarizes the architecture of the CNN used as
the student.

Table 1: Low-complexity Student Model realized by a compact CP-
ResNet Architecture.

WIDTH GROUPING BLOCK CONFIG

W INPUT 5× 5, P

W 1 R 3× 3, 1× 1, Pf

W 1 R 3× 3, 3× 3, Pf

LINEAR W → 2Ẇ
2×W 2 R 3× 3, 3× 3

LINEAR 2W → 4Ẇ
4×W − C 1 R 3× 3, 1× 1

CLASSIFIER 4×W − C → 10 CLASSES
GLOBAL MEAN POOLING

P : 2× 2 MAX POOLING.
Pf : 2× 1 MAX POOLING OVER THE FREQUENCY DIMENSION.
R: RESIDUAL, THE INPUT IS ADDED TO THE OUTPUT

3.2. Teacher Model: PaSST

The main criterion for selecting teacher models is the accuracy of
the predictions to reflect class similarity structures. The choice of
PaSST transformer models as teachers is motivated by their high
performance on downstream tasks – for instance, achieving an ac-
curacy of 76.3% [15] on the TAU Urban Acoustic Scenes 2020 Mo-
bile development dataset [2] –, and their ability to recognize fine-
grained acoustic events after being pre-trained on the 527 classes of
Audioset [22]. The PaSST models selected for downstream train-
ing on the TAU Urban Acoustic Scenes 2022 Mobile development
dataset [2] are pre-trained on Audioset and extract patches of size
16x16 with a stride of 10. We use a structured Patchout of 6 only on
the frequency dimension, which means that 6 frequency bands are
dropped at random during training. This is an important counter-
measure to prevent overfitting on the downstream dataset [3]. Due
to the short length of the audio clips, we do not apply Patchout
across the time dimension. The experimental setup is the same as
provided in the system’s technical report [31].

Table 2 compares a PaSST Baseline model with Mixup and
Freq-MixStyle augmentation techniques. Freq-MixStyle is only ap-
plied to the raw spectrograms. While the effect on real devices is
limited, Mixup and Freq-MixStyle substantially improve over the
Baseline on simulated and unseen devices. In particular, on unseen
devices, Freq-MixStyle significantly outperforms Mixup, underlin-
ing its superior device generalization capabilities and leading to an
overall performance gain compared to Mixup. Ensemble denotes
averaged logits of five PaSST models trained with different Freq-
MixStyle configurations. The most significant performance gain of
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Method Real Devices Simulated Devices Unseen Devices Overall

A B C Real S1 S2 S3 Sim S4 S5 S6 Unseen

PaSST Baseline 72.00 63.29 67.59 67.63 58.13 56.61 58.25 57.66 57.05 57.62 53.67 56.11 60.46
+ Mixup 72.65 62.86 68.04 67.85 59.24 57.30 58.81 58.45 57.99 58.24 55.07 57.10 61.13
+ Freq-MixStyle 72.14 63.55 67.32 67.68 59.69 57.24 59.99 58.97 59.03 58.65 56.98 58.22 61.64

Ensemble 73.70 64.07 68.09 68.62 61.30 58.24 60.79 60.11 60.39 60.03 58.76 59.73 62.82

Table 2: PaSST downstream training on the TAU Urban Acoustic Scenes 2022 Mobile development dataset [2] following the official test
split: Device-wise comparison between Baseline, Mixup (α = 0.3), Freq-MixStyle (α = 0.4, p = 0.4) and an ensemble of five PaSST
models trained with different Freq-MixStyle configurations. The provided accuracies (%) are averaged over three runs and the last 10 epochs
of training. The devices are grouped according to real devices (Real: A, B, C), the seen, simulated devices (Sim: S1, S2, S3) and the unseen,
simulated devices (Unseen: S4, S5, S6).

the ensemble occurs with unseen devices, underlining the ensem-
ble’s robustness.

4. KNOWLEDGE DISTILLATION FROM PASST TO CNN

Knowledge Distillation (KD) [12–14] is the concept used to trans-
fer the knowledge of the well-performing, large PaSST transformer
from Section 3.2 to the low-complexity RFR-CNN introduced in
Section 3.1. PaSST derives its superiority from its size and the pre-
training on Audioset [22]. Hence, in a KD setup, PaSST implic-
itly passes its semantically rich understanding of acoustic scenes
gained from the 527 classes of Audioset to the low-complexity
student model. We limit the knowledge transfer to the logits and
leave experiments on mimicking embeddings as an interesting fu-
ture research direction. In Section 5, we experiment with KD and
probe for a positive performance impact of the following three vari-
ations:

• Teacher Ensemble: We ensemble five PaSST models with dif-
ferent Freq-MixStyle configurations by averaging their logits.
Freq-MixStyle trained models with different values for α and p
tend to have different strengths on real, simulated, and unseen
devices, leading to a robust and well-performing ensemble, as
shown in Table 2.

• Superior Teacher: Given that the full 10-second audio files
can be reassembled from the 1-second pieces, the distillation
loss can be additionally based on teacher predictions for the
full 10 seconds. This way, the student has to match superior
teacher predictions while having only access to one-tenth of
the input sequence. Eq. 2 presents the adapted loss calcula-
tion, adding the new distillation loss LDIST SUP with its corre-
sponding weight λSUP.

LTOTAL = LLABEL + λLDIST + λSUPLDIST SUP (2)

• Distillation on Out-of-Domain Dataset: In addition to KD
on the TAU Urban Acoustic Scenes 2022 Mobile development
dataset [2], we experiment with transferring the knowledge us-
ing Audioset [22]. For each batch, we sample a batch of Au-
dioset samples of the same size, generate teacher predictions,
and calculate the distillation loss. The procedure results in a
total loss calculated as shown in Eq. 3.

LTOTAL = LLABEL + λ(LDIST + LDIST AUDIOSET) (3)

When computing student and teacher predictions in the context
of Mixup, the same audio snippets are mixed using the same mix-
ing coefficients. Freq-Mixstyle is applied to student and teacher
spectrograms independently, which forces the student to match the
teacher’s soft targets in the context of different device-styles.

4.1. Experimental Setup

Preprocessing: The raw audio signal is down-sampled using a sam-
pling rate of 32 kHz. Spectrograms are generated by applying Short
Time Fourier Transformation with a window size of 2048 and an
overlap of 744 (approximately 36%) in case of the students and a
window size of 800 with an overlap of 320 (40%) for the teach-
ers. A Mel-scaled filter bank is applied to create spectrograms with
256 and 128 mel bins for students and teachers, respectively. The
applied preprocessing matches the teacher’s pre-training, while, for
the student, a higher frequency resolution proved beneficial.
Training: All students in the KD framework are trained with a
batch size of 64 for a total amount of 750 epochs, where the mod-
els only process one-tenth of the available data each epoch because
of the random 1-second cropping. Adam optimizer with a specific
learning rate schedule is applied. The learning rate is exponentially
increasing to 1×10−3 until epoch 150 and linearly decreasing from
epoch 250 until epoch 650, dropping to a value of 5× 10−6.

5. RESULTS

A summary of the results for the RFR-CNN student model, as pre-
sented in Section 3.1, is shown in Table 3. The results are catego-
rized into Student Baseline (no KD), KD Baseline (PaSST + Freq-
MixStyle as teacher) and the three KD variations presented in Sec-
tion 4. In the following, we describe the effect of Freq-MixStyle
compared to Mixup, the effect of KD, and the impact of the KD
variations.

5.1. Mixup vs. Freq-MixStyle

We investigated different Mixup and Freq-MixStyle configurations
and observed that Mixup with α = 0.4 and Freq-MixStyle with
α = 0.3 and p = 0.4 yield robust results across a variety of config-
urations. For Student Baseline, Freq-MixStyle outperforms Mixup
significantly, achieving the highest performance gains on the unseen
device category. In combination with KD, Freq-MixStyle is still
slightly superior to Mixup in terms of accuracy but Mixup leads to
lower log losses. Freq-MixStyle generalizes much better to unseen
devices than Mixup but weakens the performance on real devices.

5.2. Effectiveness of KD

We experiment with three different temperature configurations and
adapt the distillation loss weight λ for each temperature. We select
the best of the three settings High (H) (T=8, λ=800), Medium (M)
(T=3, λ=100) and Low (L) (T=1, λ=50) to be listed in each row of
Table 3. KD with Mixup requires high temperatures, while Freq-
MixStyle tends to favour low temperature settings.
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Method Configuration Test Accuracy (%) Log Loss

Mixup Freq-MixStyle Temp Teach. Type AS Real Sim Unseen Overall Overall

✗ ✗ - No ✗ 61.97 50.10 40.71 50.92 1.5822
Student Baseline ✓ ✗ - No ✗ 62.70 52.48 42.99 52.72 1.4161

✗ ✓ - No ✗ 63.89 56.00 49.98 56.62 1.2344

✗ ✗ H Single ✗ 66.21 57.35 50.14 57.89 1.1316
KD Baseline ✓ ✗ H Single ✗ 66.43 58.31 51.32 58.68 1.1063

✗ ✓ L Single ✗ 64.36 58.36 55.12 59.28 1.1431

KD Ensemble ✓ ✗ H Ensemble ✗ 66.30 58.65 52.06 59.00 1.0888
✗ ✓ L Ensemble ✗ 64.74 58.59 55.14 59.49 1.1322

KD Superior Teacher ✓ ✗ H Superior ✗ 66.53 58.54 51.89 58.98 1.1033
✗ ✓ L Superior ✗ 64.73 58.60 55.15 59.49 1.1313

✓ ✗ M Single ✓ 66.54 59.09 52.49 59.37 1.0906
KD Audioset ✗ ✓ M Single ✓ 64.99 58.50 54.43 59.30 1.0939

✓ ✗ M Ensemble ✓ 66.35 59.95 52.99 59.76 1.0794

Table 3: Results of the low-complexity RFR-CNN student model on the official test split: Accuracies (%) for the device groups Real (A, B,
C), Sim (S1, S2, S3) and Unseen (S4, S5, S6), overall accuracy and overall log loss are compared between a baseline using no KD, a baseline
using KD and KD variations. Configuration Temp is referring to High (H) (T=8), Medium (M) (T=3) and Low (L) (T=1) temperature
when calculating teacher and student soft targets, and AS indicates the use of Audioset [22] for KD. All results presented are averages of 3
independent runs averaged over the last 10 epochs of training.

KD Baseline outperforms Student Baseline, leading to an over-
all accuracy improvement of 2.66% when comparing the Freq-
MixStyle configurations. While the accuracy on real devices im-
proves only slightly, the accuracy on unseen devices increases by
5.14%.

5.3. Effectiveness of KD variations

Using the PaSST ensemble from Table 2 as the teacher improves the
results slightly but consistently for both Freq-MixStyle and Mixup,
in terms of overall accuracies and log losses. However, the per-
formance gain of more than 1 percentage point in terms of overall
accuracy that the ensemble gives compared to a single PaSST model
cannot be transferred to the student.

We investigate a range of λSUP values for each temperature
setting for the superior teacher variation. The superior teacher pre-
dictions on the 10-second snippets are computed offline. In case of
Mixup, the superior predictions are mixed accordingly and no Freq-
MixStyle is applied to infer the predictions. KD Superior Teacher
performs similar to KD Ensemble using λSUP = 3.0 for the Mixup
configuration and λSUP = 1.0 for the Freq-MixStyle configuration.

With KD Audioset, Freq-MixStyle is applied to samples from
both datasets, while Mixup is not applied to the samples from Au-
dioset since no hard labels are available. The Mixup configuration
shows the best results in terms of accuracy across all Mixup settings,
while the Freq-MixStyle configuration only leads to a minor accu-
racy improvement over KD Baseline. However, the Freq-MixStyle
configuration achieves the lowest log loss across all Freq-MixStyle
experiments. Combining Audioset with KD Ensemble and using
Mixup leads to the highest overall accuracy and the lowest log loss.

As a final investigation, Figure 1 compares the impact of Freq-
MixStyle, Mixup and the KD variations on the overall and the un-
seen device accuracies. The dominating factor for enhanced gen-
eralization to unseen devices is Freq-MixStyle, which clearly out-
performs Mixup. The KD variations slightly improve over the KD
baseline in terms of overall accuracy but have no significant impact
on unseen device performance.

Figure 1: Comparison of the different KD variations and augmen-
tation techniques and their effect on the overall accuracy and the
performance on unseen devices. Each line depicts an average over
three runs and is colored according to the performance on unseen
devices. In addition to the configurations shown in the figure, ex-
periments differ in terms of temperature setting (High, Medium,
Low).

6. CONCLUSION

In this paper, we distilled the knowledge of a PaSST transformer
model into a low-complexity CNN. We showed how the pre-trained
PaSST model can be effectively adapted to a downstream task.
CNN students that are taught by PaSST models perform signifi-
cantly better than CNNs learning only from the hard class labels.
Based on this, we experiment with three KD variations, including a
PaSST teacher ensemble, a superior teacher and KD on Audioset,
that show promising performance compared to the KD baseline. To
enhance generalization to unseen devices, we compared Mixup with
Freq-MixStyle and observed that Freq-MixStyle leads to high accu-
racy improvements on unseen devices for both PaSST teacher and
CNN student models.
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